Find Jobs
Hire Freelancers

summarize scientific abstracts (repost)

$30-100 USD

Peruutettu
Julkaistu lähes 16 vuotta sitten

$30-100 USD

Maksettu toimituksen yhteydessä
This bid request is for one article only, to help me find a compatible content writer. I have 40+ more articles that will need to be written** Project: ** Summarize scientific abstracts and assorted quotes into no-hype (info rather advertising) plain English, focusing on the key research results, with liberal use of search engine keywords. **Requirements** Writer must have a science background with good understanding of terminology as related to anti-aging skin care (biology). The content must be easy to read, and correctly referenced in a bibliography. Content must be neutral, NO HYPE. All abstracts are provided. ## Deliverables **Example of abstracts for the product Silymarin ****Flavonolignans from Silybum marianum moderate UVA-induced oxidative damage to HaCaT keratinocytes. ** Svobodová A, Zdarilová A, Walterová D, Vostálová J., Department of Medical Chemistry and Biochemistry, Palacký University. "BACKGROUND: UV radiation from sunlight is a very potent environmental risk factor in the pathogenesis of skin cancer. Exposure to UV light, especially the UVA part, provokes the generation of reactive oxygen species (ROS), which induce oxidative stress in exposed cells. Topical application of antioxidants is a successful strategy for protecting the skin against UV-caused oxidative damage. OBJECTIVE: In this study, silybin (SB) and 2,3-dehydrosilybin (DS) (1-50 micromol/l), flavonolignan components of Silybum marianum, were tested for their ability to moderate UVA-induced damage. METHODS: Human keratinocytes HaCaT were used as an appropriate experimental in vitro model, to monitor the effects of SB and DS on cell viability, proliferation, intracellular ATP and GSH level, ROS generation, membrane lipid peroxidation, caspase-3 activation and DNA damage. RESULTS: Application of the flavonolignans (1-50 micromol/l) led to an increase in cell viability of irradiated (20 J/cm(2)) HaCaT keratinocytes. SB and DS also suppressed intracellular ATP and GSH depletion, ROS production and peroxidation of membrane lipids. UVA-induced caspases-3 activity/activation was suppressed by treatment with SB and DS. Lower concentrations of both compounds (10 micromol/l) significantly reduced cellular DNA single strand break formation. CONCLUSION: Taken together, the results suggest that these flavonolignans suppress UVA-caused oxidative stress and may be useful in the treatment of UVA-induced skin damage." [Read more][1] **Silymarin, a Flavonoid from Milk Thistle (Silybum marianum L.), Inhibits UV-induced Oxidative Stress Through Targeting Infiltrating CD11b(+) Cells in Mouse Skin. **Katiyar SK, Meleth S, Sharma SD. Department of Dermatology, University of Alabama . "Phytochemicals have shown promise in inhibiting UV-induced oxidative stress, and therefore are considered as potent inhibitors of UV-induced oxidative stress-mediated skin diseases. We have shown previously that topical treatment of silymarin, a flavonoid from milk thistle (Silybum marianum), inhibits UV-induced oxidative stress in mouse skin. However, the cellular targets responsible for the inhibition of UV-induced oxidative stress by silymarin are not clearly defined. To address this issue, C3H/HeN mice were UV irradiated (90 mJ cm(-2)) with or without topical treatment with silymarin (1 mg cm(-2) skin area). Mice were killed 48 h later and skin samples collected. Flow cytometric analysis of viable dermal cells revealed that the number of infiltrating CD11b+ cells were the major source of oxidative stress (31.8%) in UV-irradiated skin compared with non-UV-exposed skin (0.4%). Treatment of silymarin inhibited UV-induced oxidative stress through inhibition of infiltrating CD11b+ cells. The analysis of myeloperoxidase also indicated that silymarin significantly (P < 0.001) decreased UV-induced infiltration of leukocytes, and this effect of silymarin was similar to that of intraperitoneal treatment of mice with monoclonal antibodies to CD11b. The inhibitory effect of silymarin, regardless of whether it is topically treated before or after UV irradiation, was of similar magnitude. Intraperitoneal administration of monoclonal antibodies to CD11b (rat IgG2b) to C3H/HeN mice inhibited UVB-induced oxidative stress generated by both epidermal and dermal cells as is evident by relative fluorescence intensity of oxidized rhodamine. Similar to the effect of anti-CD11b, silymarin also inhibited UV-induced oxidative stress in both epidermal and dermal cells. Further, CD11b+ and CD11b- cell subsets from UV-treated or silymarin+UV-treated mice were separated by immunomagnetic cell isolation technique from total epidermal and dermal single cell suspensions and analyzed for reactive oxygen species (ROS)/H(2)O(2) production. Analytic data revealed that CD11b+ cell population from UV-irradiated skin resulted in significantly higher production of ROS in both epidermis and dermis than CD11b- cell population, and that silymarin inhibited UV-induced oxidative stress through targeting infiltrating the CD11b+ cell type in the skin." [Read more][2] **Chemoprevention of photocarcinogenesis by selected dietary botanicals. **Baliga MS, Katiyar SK. Department of Dermatology, University of Alabama at Birmingham, USA. "Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation as a tumor initiator, tumor promoter and complete carcinogen, and their excessive exposure can lead to the development of various skin disorders including melanoma and nonmelanoma skin cancers. Sunscreens are useful, but their protection is not adequate to prevent the risk of UV-induced skin cancer. It may be because of inadequate use, incomplete spectral protection and toxicity. Therefore new chemopreventive methods are necessary to protect the skin from photodamaging effects of solar UV radiation. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of skin carcinogenesis. In recent years, considerable interest has been focused on identifying naturally occurring botanicals, specifically dietary, for the prevention of photocarcinogenesis. A wide variety of botanicals, mostly dietary flavonoids or phenolic substances, have been reported to possess substantial anticarcinogenic and antimutagenic activities because of their antioxidant and antiinflammatory properties. This review summarizes chemopreventive effects of some selected botanicals, such as apigenin, curcumin, grape seed proanthocyanidins, resveratrol, silymarin, and green tea polyphenols, against photocarcinogenesis in in vitro and in vivo systems. Attention has also been focused on highlighting the mechanism of chemopreventive action of these dietary botanicals. We suggest that in addition to the use of these botanicals as dietary supplements for the protection of photocarcinogenesis, these botanicals may favorably supplement sunscreens protection and may provide additional antiphotocarcinogenic protection including the protection against other skin disorders caused by solar UV radiation." [Read more][3] **Mechanisms and preclinical efficacy of silibinin in preventing skin cancer. **Singh RP, Agarwal R. Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado at Denver and Health Sciences Center, USA. "Eukaryotic cellular machineries including the genome face continuous challenge from environmental deleterious agents, as well as from the by products of their own metabolism. Our skin is the most important barrier. It protects us from xenobiotic and genotoxic agents including ultraviolet (UV) solar radiation and potential carcinogens, which are notorious for causing skin cancer. There is a rise in non-melanoma skin cancer (NMSC), which is diagnosed in more than a million people every year in the United States alone, and is also prevalent in the other Western countries. In addition to sunscreens, chemoprevention of skin cancer by natural non-toxic compounds is suggested as an effective strategy to prevent the incidence of skin cancer. Our extensive animal studies on silibinin, a non-toxic bioactive component in milk thistle, suggest that it has a strong potential to prevent skin cancer incidence, promotion and progression in response to chemical carcinogens and tumour promoters as well as UV radiation. Our data suggest that silibinin has multiple targets in the cell, and can be protective against the harmful effects of cytotoxic agents such as reactive oxygen species and inflammation. Further, silibinin modulates mitogenic and survival signalling, p53, Cip1/p21 and other cell cycle regulatory molecules to prevent UVB-induced skin carcinogenesis. Our ongoing studies also suggest the positive effect of silibinin on the repair of UVB-induced DNA damage in mouse skin. Overall, the protective efficacy of silibinin against skin cancer is supported by sound mechanistic rationale in animal and cell culture studies, and suggests its potential use for humans." [Read more][4] **Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (Review). **Katiyar SK. Department of Dermatology, The University of Alabama at Birmingham, USA "Several environmental and genetic factors are involved in skin cancer induction, however exposure to chemical carcinogens and solar ultraviolet (UV) radiation are primarily responsible for several skin diseases including skin cancer. Chronic exposure of solar UV radiation to the skin leads to basal cell and squamous cell carcinoma, and melanoma. Chemoprevention of skin cancer by consumption of naturally occurring botanicals appears a practical approach and therefore world-wide interest is considerably increasing to use these botanicals. Sunscreens are useful but their protection is not ideal because of inadequate use, incomplete spectral protection and toxicity. Silymarin, a plant flavonoid isolated from the seeds of milk thistle (Silybum marianum), has been shown to have chemopreventive effects against chemical carcinogenesis as well as photocarcinogenesis in various animal tumor models. Topical treatment of silymarin inhibited 7,12-dimethylbenz(a)anthracene-initiated and several tumor promoters, like 12-O-tetradecanoylphorbol-13-acetate, mezerein, benzoyal peroxide and okadaic acid, induced skin carcinogenesis in mouse models. Similarly, silymarin also prevented UVB-induced skin carcinogenesis. Wide range of in vivo mechanistic studies indicated that silymarin possesses antioxidant, anti-inflammatory and immunomodulatory properties which may lead to the prevention of skin cancer in in vivo animal models. The available experimental information suggests that silymarin is a promising chemopreventive and pharmacologically safe agent which can be exploited or tested against skin cancer in human system. Moreover, silymarin may favorably supplement sunscreen protection and provide additional anti-photocarcinogenic protection." [Read more][5] **Silibinin prevents ultraviolet radiation-caused skin damages in SKH-1 hairless mice via a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 in epidermis. **Dhanalakshmi S, Mallikarjuna GU, Singh RP, Agarwal [login to view URL] of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, USA. "Non-melanoma skin cancer (NMSC) accounts for >1 million new cases each year in the US alone suggesting that more approaches are needed for its prevention and control. Earlier studies by us have shown that silymarin (a crude form of biologically active silibinin with some other isomers), isolated from milk thistle, affords strong protection against ultraviolet (UV) radiation-induced NMSC in SKH-1 hairless mice; however, the molecular mechanisms of its efficacy are not known. Here, we assessed the effect of silibinin on UV-induced DNA damage and p53-p21/Cip1 accumulation, and their roles in UV-induced cell proliferation and apoptosis in SKH-1 hairless mouse epidermis. Topical application of silibinin prior to, or immediately after, UV irradiation resulted in a very strong protective effect against UV-induced thymine dimer positive cells in epidermis accounting for 76-85% (P < 0.001) inhibition. In other studies, silibinin treatment resulted in a further up-regulation of p53 by approximately 1.6-fold (P < 0.001) together with an increase ( approximately 2-fold, P < 0.001) in p21/Cip1 protein levels. Proliferative cell nuclear antigen staining showed that silibinin pre- or post-topical application significantly inhibits (40-52 and 20-40%, respectively, P < 0.001) UV-induced epidermal cell proliferation. In addition, silibinin strongly decreased UV-caused terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic/sunburn cell formation (P < 0.001). These findings suggest that silibinin affords strong protection against UV-induced damage in epidermis by a decrease in thymine dimer positive cells and an up-regulation of p53-p21/Cip1 possibly leading to an inhibition in both cell proliferation and apoptosis. Comparable effects of silibinin following its pre- or post-UV application suggest that mechanisms other than sunscreen effect are operational in silibinin efficacy against UV-caused skin damages." [Read more][6] **Treatment of silymarin, a plant flavonoid, prevents ultraviolet light-induced immune suppression and oxidative stress in mouse skin. **Katiyar SK. Department of Dermatology, University of Alabama at Birmingham, USA. "It is well documented that ultraviolet (UV) light-induced immune suppression and oxidative stress play an important role in the induction of skin cancers. Earlier, we have shown that topical treatment of silymarin, a plant flavonoid from milk thistle (Silybum marianum L. Gaertn.), to mouse skin prevents photocarcinogenesis, but the preventive mechanism of photocarcinogenesis in vivo animal system by silymarin is not well defined and understood. To define the mechanism of prevention, we employed immunostaining, analytical assays and ELISA which revealed that topical treatment of silymarin (1 mg/cm2 skin area) to C3H/HeN mice inhibits UVB (90 mJ/cm2)-induced suppression of contact hypersensitivity (CHS) response to contact sensitizer dinitrofluorobenzene. Prevention of UVB-induced suppression of CHS by silymarin was found to be associated with the inhibition of infiltrating leukocytes, particularly CD11b+ cell type, and myeloperoxidase activity (50-71%). Silymarin treatment also resulted in significant reduction of UVB-induced immunosuppressive cytokine interleukin-10 producing cells and its production (58-72%, p<0.001). Topical treatment of silymarin also resulted in significant reduction of the number of UVB-induced H2O2 producing cells and inducible nitric oxide synthase expressing cells concomitant with decrease in H2O2 (58-65%, p<0.001) and nitric oxide (65-68%, p<0.001) production. Together, these data suggest that prevention of UVB-induced immuno-suppression and oxidative stress by silymarin may be associated with the prevention of photocarcinogenesis in mice. The data obtained from this study also suggest: i) phase-I clinical trial of silymarin in high skin cancer risk human population and ii) development of sunscreen containing silymarin as an antioxidant (chemopreventive agent) or silymarin can be supplemented in skin care products." [Read more][7] **Flavonoid antioxidant silymarin and skin cancer. **Singh RP, Agarwal R. Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA. "Oxidative stress is one of the key players in skin carcinogenesis, and therefore identifying nontoxic strong antioxidants to prevent skin cancer is an important area of research. In both animal and cell culture studies, we have shown that silymarin, a naturally occurring polyphenolic flavonoid antioxidant, exhibits preventive and anticancer effects against skin cancer. For example, silymarin strongly prevents both photocarcinogenesis and skin tumor promotion in mice, in part, by scavenging free radicals and reactive oxygen species and strengthening the antioxidant system. We also found that this effect of silymarin is by inhibiting endogenous tumor promoter tumor necrosis factor alpha in mouse skin, a central mediator in skin tumor promotion. In mechanistic studies, silymarin inhibits mitogenic and cell survival signaling and induces apoptosis. Furthermore, silymarin effectively modulates cell-cycle regulators and check points toward inhibition of proliferation, and growth arrest in G0-G1 and G2-M phases of the cell cycle. Thus, due to its mechanism-based chemopreventive and anticancer effects in experimental models, silymarin is an important candidate for the prevention and/or therapy of skin cancer, as well as other cancers of epithelial origin in humans." [Read more][8] **Silymarin inhibits growth and causes regression of established skin tumors in SENCAR mice via modulation of mitogen-activated protein kinases and induction of apoptosis. **Singh RP, Tyagi AK, Zhao J, Agarwal R. Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, CO 80262, USA. "This study reports in vivo therapeutic efficacy of silymarin against skin tumors with mechanistic rationale. 7,12-Dimethylbenz[a]anthracene-12-O-tetradecanoyl-phorbol-13-acetate (DMBA-TPA)-induced established skin papilloma (tumor)-bearing SENCAR mice were fed with 0.5% silymarin in AIN-93M-purified diet (w/w), and both tumor growth and regression were monitored during 5 weeks of feeding regimen. Silymarin feeding significantly inhibited (74%, P < 0.01) tumor growth and also caused regression (43%, P < 0.01) of established tumors. Proliferating cell nuclear antigen and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling immunohistochemical staining of tumors showed that silymarin decreases proliferation index by 48% (P < 0.001) and increases apoptotic index by 2.5-fold (P < 0.001), respectively. Skin tumor growth inhibition and regression by silymarin were also accompanied by a strong decrease (P < 0.001) in phospho-ERK1/2 levels in tumors from silymarin-fed mice compared with controls. In the studies evaluating bioavailability and physiologically achievable level of silymarin (as silibinin) in plasma, skin tumor, skin, liver, lung, mammary gland and spleen, we found 10, 6.5, 3.1, 13.7, 7.7, 5.9 and 4.4 microg silibinin/ml plasma or per gram tissue, respectively. In an attempt to translate these findings to human skin cancer and to establish biological significance of physiologically achievable level, effect of plasma concentration of silibinin was next examined in human epidermoid carcinoma A431 cells. Silibinin treatment of cells in culture at 12.5, 25 (plasma level) and 50 microM doses resulted in 30-74% (P < 0.01-0.001) growth inhibition and 7-42% death of A431 cells in a dose- and time-dependent manner; apoptosis was identified as a cell death response by silibinin. Similar silibinin treatments also resulted in a significant decrease in phospho-mitogen-activated protein kinase/extracellular signal-regulated protein kinase 1/2 (MAPK/ERK1/2) levels, but an up-regulation of stress-activated protein kinase/jun NH(2)-terminal kinase (SAPK/JNK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) activation in A431 cells. The use of MEK1 inhibitor, PD98059, showed that inhibition of ERK1/2 signaling, in part, contributes to silibinin-caused cell growth inhibition. Together, the data suggest that an inhibition of ERK1/2 activation and an increased activation of JNK1/2 and p38 by silibinin could be possible underlying molecular events involved in inhibition of proliferation and induction of apoptosis in A431 cells. These data suggest that silymarin and/or its major active constituent silibinin could be an effective agent for both prevention and intervention of human skin cancer." [Read more][9] [Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin][10] [][11] A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. [][12] ignificant inhibition by the flavonoid antioxidant silymarin against 12-O-tetradecanoylphorbol 13-acetate-caused modulation of antioxidant and inflammatory enzymes, and cyclooxygenase 2 and interleukin-1alpha expression in SENCAR mouse epidermis: implications in the prevention of stage I tumor promotion. [Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF alpha.][13] [Protective effects of silymarin against photocarcinogenesis in a mouse skin model.][14] [Cutaneous photodamage, oxidative stress, and topical antioxidant protection.][15]
Projektin tunnus (ID): 3953928

Tietoa projektista

6 ehdotukset
Etäprojekti
Aktiivinen 16 vuotta sitten

Haluatko ansaita rahaa?

Freelancerin tarjouskilpailun edut

Aseta budjettisi ja aikataulu
Saa maksu työstäsi
Kuvaile ehdotustasi
Rekisteröinti ja töihin tarjoaminen on ilmaista
6 freelancerit tarjoavat keskimäärin $38 USD tätä projektia
Käyttäjän avatar
See private message.
$25,50 USD 7 päivässä
5,0 (300 arvostelua)
7,5
7,5
Käyttäjän avatar
See private message.
$34 USD 7 päivässä
5,0 (236 arvostelua)
6,9
6,9
Käyttäjän avatar
See private message.
$85 USD 7 päivässä
4,9 (122 arvostelua)
6,1
6,1
Käyttäjän avatar
See private message.
$29,75 USD 7 päivässä
4,9 (20 arvostelua)
4,2
4,2
Käyttäjän avatar
See private message.
$11,05 USD 7 päivässä
5,0 (24 arvostelua)
3,8
3,8
Käyttäjän avatar
See private message.
$42,50 USD 7 päivässä
0,0 (0 arvostelua)
0,0
0,0

Tietoja asiakkaasta

Maan TAIWAN lippu
Keelung, Taiwan
5,0
159
Maksutapa vahvistettu
Liittynyt toukok. 27, 2008

Asiakkaan vahvistus

Kiitos! Olemme lähettäneet sinulle sähköpostitse linkin, jolla voit lunastaa ilmaisen krediittisi.
Jotain meni pieleen lähetettäessä sähköpostiasi. Yritä uudelleen.
Rekisteröitynyttä käyttäjää Ilmoitettua työtä yhteensä
Freelancer ® is a registered Trademark of Freelancer Technology Pty Limited (ACN 142 189 759)
Copyright © 2024 Freelancer Technology Pty Limited (ACN 142 189 759)
Ladataan esikatselua
Lupa myönnetty Geolocation.
Kirjautumisistuntosi on vanhentunut ja sinut on kirjattu ulos. Kirjaudu uudelleen sisään.