Kalman Filter analysis

  • Tila: Pending
  • Palkinto: $150
  • Vastaanotetut työt: 1

Kilpailun tehtävänanto

I would like use the Kalman filter (not smoother) to estimate smooth values - in real-time - (for the position (Pt) and "velocity" (Vt, first derivative) of the attached time series.

This time series shows clear signs of mean reversion around zero, meaning that the acceleration (At, second derivative) should have a negative coefficient with Pt.

I would prefer a R-based solution, preferably using the FKF package.

I tried the following transition equation, unsuccessfully.

P(t+1)=(1 1 0.5 ) P(t) + Noise(P)
V(t+1)=(0 1 1 ) V(t) + Noise(V)
A(t+1)=(-Z 0 1) A(t) + Noise(A)

Additionally, I would like noises to be estimated (and not inputted).

As a newbie in Kalman filter, I’ve been struggling with this, but for someone who’s familiar with R and the Kalman filter, it should be an easy task.

Suositellut taidot

Kilpailun parhaat työt

Näytä lisää töitä

Julkinen selvennystaulu

  • freelanmohan7
    freelanmohan7
    • 3 vuotta sitten

    Hi, Expert in Kalman Filtering here. I need few clarifications regarding this project. You have three state variables in your model and the attached file has info about only one state. What does the data represent? acceleration or position? What is Z in those equations. I guess the information you provided is incomplete.

    • 3 vuotta sitten

Kuinka päästä alkuun kilpailuiden kanssa

  • Julkaise kilpailusi

    Julkaise kilpailusi Nopeaa ja helppoa

  • Vastaanota tonnikaupalla osallistumisia

    Vastaanota tonnikaupalla osallistumisia Ympäri maailmaa

  • Palkitse paras hakemus

    Palkitse paras hakemus Lataa tiedostot - helppoa!

Ilmoita kilpailu nyt tai liity tänään!