Kalman Filter analysis
- Tila: Pending
- Palkinto: $150
- Vastaanotetut työt: 1


Kilpailun tehtävänanto
I would like use the Kalman filter (not smoother) to estimate smooth values - in real-time - (for the position (Pt) and "velocity" (Vt, first derivative) of the attached time series.
This time series shows clear signs of mean reversion around zero, meaning that the acceleration (At, second derivative) should have a negative coefficient with Pt.
I would prefer a R-based solution, preferably using the FKF package.
I tried the following transition equation, unsuccessfully.
P(t+1)=(1 1 0.5 ) P(t) + Noise(P)
V(t+1)=(0 1 1 ) V(t) + Noise(V)
A(t+1)=(-Z 0 1) A(t) + Noise(A)
Additionally, I would like noises to be estimated (and not inputted).
As a newbie in Kalman filter, I’ve been struggling with this, but for someone who’s familiar with R and the Kalman filter, it should be an easy task.
Suositellut taidot
Julkinen selvennystaulu
Kuinka päästä alkuun kilpailuiden kanssa
-
Ilmoita kilpailusi Nopeaa ja helppoa
-
Vastaanota tonnikaupalla osallistumisia Ympäri maailmaa
-
Myönnä palkinto parhaalle työlle Lataa tiedostot - Helppoa!